11:32 am - Monday May 28, 2012

Nuclear Issues

nuclear bombNuclear safety covers the actions taken to prevent nuclear and radiation accidents or to limit their consequences. This covers nuclear power plants as well as all other nuclear facilities, the transportation of nuclear materials, and the use and storage of nuclear materials for medical, power, industry, and military uses.

The nuclear power industry has improved the safety and performance of reactors, and has proposed new safer (but generally untested) reactor designs but there is no guarantee that the reactors will be designed, built and operated correctly. Mistakes do occur and the designers of reactors at Fukushima in Japan did not anticipate that a tsunami generated by an earthquake would disable the backup systems that were supposed to stabilize the reactor after the earthquake. According to UBS AG, the Fukushima I nuclear accidents have cast doubt on whether even an advanced economy like Japan can master nuclear safety. Catastrophic scenarios involving terrorist attacks are also conceivable.

An interdisciplinary team from MIT have estimated that given the expected growth of nuclear power from 2005 – 2055, at least four serious nuclear accidents would be expected in that period. To date, there have been five serious accidents (core damage) in the world since 1970 (one at Three Mile Island in 1979; one at Chernobyl in 1986; and three at Fukushima-Daiichi in 2011), corresponding to the beginning of the operation of generation II reactors. This leads to on average one serious accident happening every eight years worldwide.

Nuclear weapon safety, as well as the safety of military research involving nuclear materials, is generally handled by agencies different from those that oversee civilian safety, for various reasons, including secrecy.

Nuclear safety therefore covers at minimum: -

  • Extraction, transportation, storage, processing, and disposal of fissionable materials
  • Safety of nuclear power generators
  • Control and safe management of nuclear weapons, nuclear material capable of use as a weapon, and other radioactive materials
  • Safe handling, accountability and use in industrial, medical and research contexts
  • Disposal of nuclear waste
  • Limitations on exposure to radiation

Hazards of Nuclear Material

The world’s nuclear fleet creates about 10,000 metric tons of high-level spent nuclear fuel each year. High-level radioactive waste management concerns management and disposal of highly radioactive materials created during production of nuclear power. The technical issues in accomplishing this are daunting, due to the extremely long periods radioactive wastes remain deadly to living organisms. Of particular concern are two long-lived fission products, Technetium-99 (half-life 220,000 years) and Iodine-129 (half-life 15.7 million years), which dominate spent nuclear fuel radioactivity after a few thousand years. The most troublesome transuranic elements in spent fuel are Neptunium-237 (half-life two million years) and Plutonium-239 (half-life 24,000 years). Consequently, high-level radioactive waste requires sophisticated treatment and management to successfully isolate it from the biosphere. This usually necessitates treatment, followed by a long-term management strategy involving permanent storage, disposal or transformation of the waste into a non-toxic form.

Governments around the world are considering a range of waste management and disposal options, usually involving deep-geologic placement, although there has been limited progress toward implementing long-term waste management solutions.[40] This is partly because the timeframes in question when dealing with radioactive waste range from 10,000 to millions of years, according to studies based on the effect of estimated radiation doses

Impacts of  Nuclear Material

In spite of accidents like Chernobyl, studies have shown that nuclear deaths are mostly in uranium mining and that nuclear energy has generated far fewer deaths than the high pollution levels that result from the use of conventional fossil fuels.

The three primary objectives of nuclear safety systems as defined by the Nuclear Regulatory Commission are to shut down the reactor, maintain it in a shutdown condition, and prevent the release of radioactive material during events and accidents. These objectives are accomplished using a variety of equipment, which is part of different systems, of which each performs specific functions.

Be Sociable, Share!
<-- Google Analytics Start --> <-- Google Analytics End--> <-- Infolinks Start--> <-- Infolinks End-->